Processing math: 100%
×

Sequence generationV15.8.0

Toolbox: Pseudo-random sequence generator
cinit
x2(0,...30)0100000000000000000000000000000
Output sequence length MPN
Output sequence c(n)10000010110011111000101111110011001011001001110100

Toolbox: Low-PAPR sequence generator
Sequence length MZC
Largest prime num NZC<MZC31
Group number u
Base sequence number v0
Cyclic shift α/π
Display precision
Base sequence ˉru,v(n)1, -0.44-0.90j, 0.98+0.20j, 0.92+0.39j, 0.15-0.99j, 0.53+0.85j
0.15+0.99j, 0.98-0.20j, -0.76+0.65j, -0.99+0.10j, -0.05+1.00j, -0.25-0.97j
0.53-0.85j, -0.61-0.79j, 0.69+0.72j, -0.25+0.97j, 0.69+0.72j, -0.61-0.79j
0.53-0.85j, -0.25-0.97j, -0.05+1.00j, -0.99+0.10j, -0.76+0.65j, 0.98-0.20j
0.15+0.99j, 0.53+0.85j, 0.15-0.99j, 0.92+0.39j, 0.98+0.20j, -0.44-0.90j
1+0.00j, 1, -0.44-0.90j, 0.98+0.20j, 0.92+0.39j, 0.15-0.99j
Low-PAPR sequence r(α,δ)u,v(n)1, 0.44+0.90j, 0.98+0.20j, -0.92-0.39j, 0.15-0.99j, -0.53-0.85j
0.15+0.99j, -0.98+0.20j, -0.76+0.65j, 0.99-0.10j, -0.05+1.00j, 0.25+0.97j
0.53-0.85j, 0.61+0.79j, 0.69+0.72j, 0.25-0.97j, 0.69+0.72j, 0.61+0.79j
0.53-0.85j, 0.25+0.97j, -0.05+1.00j, 0.99-0.10j, -0.76+0.65j, -0.98+0.20j
0.15+0.99j, -0.53-0.85j, 0.15-0.99j, -0.92-0.39j, 0.98+0.20j, 0.44+0.90j
1+0.00j, -1+0.00j, -0.44-0.90j, -0.98-0.20j, 0.92+0.39j, -0.15+0.99j

Pseudo-random sequence generation

Generic pseudo-random sequences are defined by a length-31 Gold sequence. The output sequence c(n) of length MPN, where n=0,1,...,MPN1 is defined by:

c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2

where NC =1600 and the first m-sequence x1(n) shall be initialized with x1(0)=1,x1(n)=0 for n=1,2,...,30. The initialization of the second m-sequence, x2(n), is denoted by cinit=30i=0x2(i)2i with the value depending on the application of the sequence.

What it means: x2(i) is the i-th bit of cinit for i=0,...,30.


Low-PAPR sequence generation

The low-PAPR sequence r(α,δ)u,v(n) is defined by a cyclic shift α of a base sequence ˉru,v(n) according to

r(α,δ)u,v(n)=ejαnˉru,v(n)0n<MZC

where MZC=mNRBsc/2δ is the length of the sequence. Multiple sequences are defined from a single base sequence through different values of 𝛼 and 𝛿.

Base sequences ˉru,v(n) are divided into groups, where u{0,1,...,29} is the group number and v is the base sequence number within the group, such that each group contains one base sequence (𝑣 = 0) of each length MZC=mNRBsc/2δ1/2m/2δ5 and two base sequences (𝑣 = 0,1) of each length MZC=mNRBsc/2δ6m/2δ. The definition of the base sequence ˉru,v(0),...,ˉru,v(MZC1) depends on the sequence length MZC.

What it means:

  • Each base sequence length has 30 groups of sequences.
    • For base sequence length ≤ 72, there is only one base sequence within each group, i.e., v=0.
    • For base sequence length > 72, there are two sequences within each group, i.e., v = 0 or 1.
  • Base sequence of length {6, 12, 18, 24} are generated from pre-defined tables of φ
  • Low-PAPR sequence is generated by rotating the base sequence with phase α.

Base sequences of length 36 or larger

For MZC3NRBsc, the base sequence ˉru,v(0),...,ˉru,v(MZC1) is given by

ˉru,v(n)=xq(mod(n,NZC))
xq(m)=ejπqm(m+1)NZC

where

q=ˉq+1/2+v(1)2ˉq
ˉq=NZC(u+1)/31

The length NZC is given by the largest prime number such that NZC<MZC


Base sequences of length less than 36

For MZC{6,12,18,24} the base sequence is given by

ˉru,v(n)=ejϕ(n)π/40nMZC1

where the value of ϕ(n) is given by Tables 5.2.2.2-1 to 5.2.2.2-4.

For MZC=30, the base sequence is given by

ˉru,v(n)=ejπ(u+1)(n+1)(n+2)310nMZC1
φ(n) for Mzc=6
uϕ(0),...,ϕ(5)
0-3-133-1-3
1-33-1-13-3
2-3-3-331-3
31113-1-3
4111-3-13
5-31-1-3-3-3
6-313-3-3-3
7-3-11-31-1
8-3-1-31-3-3
9-3-31-33-3
10-3131-3-3
11-3-1-311-3
12113-1-33
131133-13
14111-33-1
15111-13-3
16-3-1-1-13-1
17-3-3-11-1-3
18-3-3-31-3-1
19-311-3-1-3
20-33-311-3
21-31-3-3-3-1
2211-3313
2311-3-31-3
24113-133
2511-3133
2611-1-13-1
2711-13-1-1
2811-13-3-1
2911-31-1-1
φ(n) for Mzc=12
uϕ(0),...,ϕ(11)
0-31-3-3-33-3-1111-3
1-331-313-1-11333
2-3331-33-113-33-3
3-3-3-1333-33-31-1-3
4-3-1-11311-11-1-31
5-3-331-3-3-3-13-113
61-13-1-1-1-3-1111-3
7-1-33-1-3-3-3-11-11-3
8-3-131-3-1-331331
9-3-1-1-3-3-1-3313-1-3
10-33-333-3-1-1331-3
11-3-1-3-1-1-333-1-11-3
12-3-13-3-3-1-31-1-333
13-31-1-133-3-1-1-3-1-3
1413-313331-11-13
15-313-1-1-3-3-1-131-3
16-1-1-1-11-3-133-1-31
17-111-1133-1-1-31-3
18-3133-1-1-333-33-3
19-3-33-3-1333-1-31-3
2031313-3-1131-1-3
21-3313-311113-33
22-3333-1-3-3-1-313-3
233-1-33-3-1333-3-1-3
24-3-11-31333-1-333
25-331-133-31-11-11
26-113-31-11-1-1-31-1
27-3-3333-3-11-331-3
281-1311-1-1-113-31
29-33-33-3-33-1-113-3
φ(n) for Mzc=18
uϕ(0),...,ϕ(17)
0-13-1-331-3-13-3-1-1111-1-1-1
13-33-113-3-1-3-3-1-331-13-33
2-331-1-13-3-111111-13-1-3-1
3-3-33331-31331-3-33-1-3-11
411-1-1-3-11-3-3-31-3-1-11-131
53-3113-11-1-1-311-133-33-1
6-33-1131-3-111-3133-1-3-3-3
711-33313-33-111-11-3-3-13
8-31-3-31-3-331-3-1-3-3-3-1113
93-131-3-3-11-3-333313-33-3
10-3-3-31-33113-3-313-13-3-33
11-3-3333-1-1-3-1-1-131-3-3-13-1
12-3-1-3-311-1-3-1-3-1-133-1313
1311-3-3-3-313-3331-3-13-1-31
14-33-1-3-1-311-3-3-1-13-31311
1531-31-333-1-3-3-1-3-33-3-113
16-3-1-3-1-313-3-13331-1-33-1-3
17-3-133-13-1-3-11-1-3-1-1-1331
18-31-3-1-131-3-3-3-1-3-3111-1-1
19333-3-1-3-13-11-1-31-3-3-133
20-311-3113-3-1-3-13-33-1-1-1-3
211-3-1-333-1-31-3-3-1-3-11333
22-3-31-1-111-3-13333-13131
233-1-31-3-3-333-11-3-131133
243-1-11-3-1-3-1-3-3-1-3111-3-33
25-3-31-3333-1311-3-3-33-3-1-1
26-3-1-1-31-33-1-1-333-3-13-1-1-1
27-3-333-313-1-31-1-33-3-1-1-13
28-1-31-3-3-31133-333-3-13-31
29-331-1-1-1-11-133-3-113-13-1
φ(n) for Mzc=24
uϕ(0),...,ϕ(23)
0-1-33-1313-11-3-1-3-113-3-1-3333-3-3-3
1-1-3311-31-3-31-3-1-13-3333-3133-3-3
2-1-3-31-1-1-313-1-3-1-1-31131-3-1-13-3-3
31-33-1-3-1331-1113-3-1-3-3-3-13-3-1-3-3
4-13-3-3-13-1-11313-1-1-3131-1-31-1-3-3
5-3-11-3-311-33-1-1-3131-1-3-1-31-3-3-3-3
6-3313-11-31-31-1-3-1-3-3-3-3-1-1-111-3-3
7-313-11-13-33-1-3-1-33-1-1-1-3-1-1-333-3
8-31-33-1-1-1-331-1-3-113-11-11-3-3-3-3-3
911-1-3-111-31-11-33-3-33-1-313-31-3-3
10-3-3-3-13-33131-3-1-1-31131-1-3313-3
11-33-131-1-1-133111331-3-3-11-313-3
123-33-1-3131-1-1-3-13-33-1-133-3-33-3-3
13-33-13-13311-313-33-3-3-113-3-1-1-3-3
14-31-3-1-1313-31-133-1-33-3-1-1-3-3-33-3
15-3-1-1-31-3-3-1-13-11-131-3-1311-1-1-3-3
16-3-31-133-3-11-1-111-1-13-31-31-1-1-1-3
173-13-11-311-3-33-3-1-1-1-1-1-3-3-111-3-3
18-31-31-3-31-31-3-3-3-3-31-3-311-311-3-3
19-3-3331-1-1-11-3-11-13-3-1-3-1-11-33-1-3
20-3-3-1-1-1-31-1-3-13-31-33-3331-1-11-3-3
213-11-13-3113-1-331-33-1-1-1-11-3-3-3-3
22-31-33-31-331-1-3-1-3-3-3-313-11333-3
23-3-11-3-1-111133-11-11-1-1-3-3-331-1-3
24-33-1-3-1-1-13-1-13-3-13-33-3-1311-1-3-3
25-31-1-3-3-11-3-1-311-111333-11-11-1-3
26-13-1-133-1-1-13-1-31311-3-3-3-1-3-1-3-3
273-3-3-133-3-131113-13-3-13-131-1-3-3
28-31-31-31131-3-3-113-1-331-1-3-3-3-3-3
293-3-113-1-1-3-13-1-3-1-33-1311-33-3-3-3