cinit | |
x2(0,...30) | 0100000000000000000000000000000 |
Output sequence length MPN | |
Output sequence c(n) | 10000010110011111000101111110011001011001001110100 |
Toolbox: Low-PAPR sequence generator
Sequence length MZC | |
Largest prime num NZC<MZC | 31 |
Group number u | |
Base sequence number v | 0 |
Cyclic shift α/π | |
Display precision | |
Base sequence ˉru,v(n) | 1, -0.44-0.90j, 0.98+0.20j, 0.92+0.39j, 0.15-0.99j, 0.53+0.85j 0.15+0.99j, 0.98-0.20j, -0.76+0.65j, -0.99+0.10j, -0.05+1.00j, -0.25-0.97j 0.53-0.85j, -0.61-0.79j, 0.69+0.72j, -0.25+0.97j, 0.69+0.72j, -0.61-0.79j 0.53-0.85j, -0.25-0.97j, -0.05+1.00j, -0.99+0.10j, -0.76+0.65j, 0.98-0.20j 0.15+0.99j, 0.53+0.85j, 0.15-0.99j, 0.92+0.39j, 0.98+0.20j, -0.44-0.90j 1+0.00j, 1, -0.44-0.90j, 0.98+0.20j, 0.92+0.39j, 0.15-0.99j |
Low-PAPR sequence r(α,δ)u,v(n) | 1, 0.44+0.90j, 0.98+0.20j, -0.92-0.39j, 0.15-0.99j, -0.53-0.85j 0.15+0.99j, -0.98+0.20j, -0.76+0.65j, 0.99-0.10j, -0.05+1.00j, 0.25+0.97j 0.53-0.85j, 0.61+0.79j, 0.69+0.72j, 0.25-0.97j, 0.69+0.72j, 0.61+0.79j 0.53-0.85j, 0.25+0.97j, -0.05+1.00j, 0.99-0.10j, -0.76+0.65j, -0.98+0.20j 0.15+0.99j, -0.53-0.85j, 0.15-0.99j, -0.92-0.39j, 0.98+0.20j, 0.44+0.90j 1+0.00j, -1+0.00j, -0.44-0.90j, -0.98-0.20j, 0.92+0.39j, -0.15+0.99j |
Pseudo-random sequence generation
Generic pseudo-random sequences are defined by a length-31 Gold sequence. The output sequence c(n) of length MPN, where n=0,1,...,MPN−1 is defined by:
where NC =1600 and the first m-sequence x1(n) shall be initialized with x1(0)=1,x1(n)=0 for n=1,2,...,30. The initialization of the second m-sequence, x2(n), is denoted by cinit=∑30i=0x2(i)⋅2i with the value depending on the application of the sequence.
What it means: x2(i) is the i-th bit of cinit for i=0,...,30.
Low-PAPR sequence generation
The low-PAPR sequence r(α,δ)u,v(n) is defined by a cyclic shift α of a base sequence ˉru,v(n) according to
where MZC=mNRBsc/2δ is the length of the sequence. Multiple sequences are defined from a single base sequence through different values of 𝛼 and 𝛿.
Base sequences ˉru,v(n) are divided into groups, where u∈{0,1,...,29} is the group number and v is the base sequence number within the group, such that each group contains one base sequence (𝑣 = 0) of each length MZC=mNRBsc/2δ, 1/2≤m/2δ≤5 and two base sequences (𝑣 = 0,1) of each length MZC=mNRBsc/2δ, 6≤m/2δ. The definition of the base sequence ˉru,v(0),...,ˉru,v(MZC−1) depends on the sequence length MZC.
What it means:
- Each base sequence length has 30 groups of sequences.
- For base sequence length ≤ 72, there is only one base sequence within each group, i.e., v=0.
- For base sequence length > 72, there are two sequences within each group, i.e., v = 0 or 1.
- Base sequence of length {6, 12, 18, 24} are generated from pre-defined tables of φ
- Low-PAPR sequence is generated by rotating the base sequence with phase α.
Base sequences of length 36 or larger
For MZC≤3NRBsc, the base sequence ˉru,v(0),...,ˉru,v(MZC−1) is given by
where
The length NZC is given by the largest prime number such that NZC<MZC
Base sequences of length less than 36
For MZC∈{6,12,18,24} the base sequence is given by
where the value of ϕ(n) is given by Tables 5.2.2.2-1 to 5.2.2.2-4.
For MZC=30, the base sequence is given by
φ(n) for Mzc=6 | ||||||
u | ϕ(0),...,ϕ(5) | |||||
---|---|---|---|---|---|---|
0 | -3 | -1 | 3 | 3 | -1 | -3 |
1 | -3 | 3 | -1 | -1 | 3 | -3 |
2 | -3 | -3 | -3 | 3 | 1 | -3 |
3 | 1 | 1 | 1 | 3 | -1 | -3 |
4 | 1 | 1 | 1 | -3 | -1 | 3 |
5 | -3 | 1 | -1 | -3 | -3 | -3 |
6 | -3 | 1 | 3 | -3 | -3 | -3 |
7 | -3 | -1 | 1 | -3 | 1 | -1 |
8 | -3 | -1 | -3 | 1 | -3 | -3 |
9 | -3 | -3 | 1 | -3 | 3 | -3 |
10 | -3 | 1 | 3 | 1 | -3 | -3 |
11 | -3 | -1 | -3 | 1 | 1 | -3 |
12 | 1 | 1 | 3 | -1 | -3 | 3 |
13 | 1 | 1 | 3 | 3 | -1 | 3 |
14 | 1 | 1 | 1 | -3 | 3 | -1 |
15 | 1 | 1 | 1 | -1 | 3 | -3 |
16 | -3 | -1 | -1 | -1 | 3 | -1 |
17 | -3 | -3 | -1 | 1 | -1 | -3 |
18 | -3 | -3 | -3 | 1 | -3 | -1 |
19 | -3 | 1 | 1 | -3 | -1 | -3 |
20 | -3 | 3 | -3 | 1 | 1 | -3 |
21 | -3 | 1 | -3 | -3 | -3 | -1 |
22 | 1 | 1 | -3 | 3 | 1 | 3 |
23 | 1 | 1 | -3 | -3 | 1 | -3 |
24 | 1 | 1 | 3 | -1 | 3 | 3 |
25 | 1 | 1 | -3 | 1 | 3 | 3 |
26 | 1 | 1 | -1 | -1 | 3 | -1 |
27 | 1 | 1 | -1 | 3 | -1 | -1 |
28 | 1 | 1 | -1 | 3 | -3 | -1 |
29 | 1 | 1 | -3 | 1 | -1 | -1 |
φ(n) for Mzc=12 | ||||||||||||
u | ϕ(0),...,ϕ(11) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -3 | 1 | -3 | -3 | -3 | 3 | -3 | -1 | 1 | 1 | 1 | -3 |
1 | -3 | 3 | 1 | -3 | 1 | 3 | -1 | -1 | 1 | 3 | 3 | 3 |
2 | -3 | 3 | 3 | 1 | -3 | 3 | -1 | 1 | 3 | -3 | 3 | -3 |
3 | -3 | -3 | -1 | 3 | 3 | 3 | -3 | 3 | -3 | 1 | -1 | -3 |
4 | -3 | -1 | -1 | 1 | 3 | 1 | 1 | -1 | 1 | -1 | -3 | 1 |
5 | -3 | -3 | 3 | 1 | -3 | -3 | -3 | -1 | 3 | -1 | 1 | 3 |
6 | 1 | -1 | 3 | -1 | -1 | -1 | -3 | -1 | 1 | 1 | 1 | -3 |
7 | -1 | -3 | 3 | -1 | -3 | -3 | -3 | -1 | 1 | -1 | 1 | -3 |
8 | -3 | -1 | 3 | 1 | -3 | -1 | -3 | 3 | 1 | 3 | 3 | 1 |
9 | -3 | -1 | -1 | -3 | -3 | -1 | -3 | 3 | 1 | 3 | -1 | -3 |
10 | -3 | 3 | -3 | 3 | 3 | -3 | -1 | -1 | 3 | 3 | 1 | -3 |
11 | -3 | -1 | -3 | -1 | -1 | -3 | 3 | 3 | -1 | -1 | 1 | -3 |
12 | -3 | -1 | 3 | -3 | -3 | -1 | -3 | 1 | -1 | -3 | 3 | 3 |
13 | -3 | 1 | -1 | -1 | 3 | 3 | -3 | -1 | -1 | -3 | -1 | -3 |
14 | 1 | 3 | -3 | 1 | 3 | 3 | 3 | 1 | -1 | 1 | -1 | 3 |
15 | -3 | 1 | 3 | -1 | -1 | -3 | -3 | -1 | -1 | 3 | 1 | -3 |
16 | -1 | -1 | -1 | -1 | 1 | -3 | -1 | 3 | 3 | -1 | -3 | 1 |
17 | -1 | 1 | 1 | -1 | 1 | 3 | 3 | -1 | -1 | -3 | 1 | -3 |
18 | -3 | 1 | 3 | 3 | -1 | -1 | -3 | 3 | 3 | -3 | 3 | -3 |
19 | -3 | -3 | 3 | -3 | -1 | 3 | 3 | 3 | -1 | -3 | 1 | -3 |
20 | 3 | 1 | 3 | 1 | 3 | -3 | -1 | 1 | 3 | 1 | -1 | -3 |
21 | -3 | 3 | 1 | 3 | -3 | 1 | 1 | 1 | 1 | 3 | -3 | 3 |
22 | -3 | 3 | 3 | 3 | -1 | -3 | -3 | -1 | -3 | 1 | 3 | -3 |
23 | 3 | -1 | -3 | 3 | -3 | -1 | 3 | 3 | 3 | -3 | -1 | -3 |
24 | -3 | -1 | 1 | -3 | 1 | 3 | 3 | 3 | -1 | -3 | 3 | 3 |
25 | -3 | 3 | 1 | -1 | 3 | 3 | -3 | 1 | -1 | 1 | -1 | 1 |
26 | -1 | 1 | 3 | -3 | 1 | -1 | 1 | -1 | -1 | -3 | 1 | -1 |
27 | -3 | -3 | 3 | 3 | 3 | -3 | -1 | 1 | -3 | 3 | 1 | -3 |
28 | 1 | -1 | 3 | 1 | 1 | -1 | -1 | -1 | 1 | 3 | -3 | 1 |
29 | -3 | 3 | -3 | 3 | -3 | -3 | 3 | -1 | -1 | 1 | 3 | -3 |
φ(n) for Mzc=18 | ||||||||||||||||||
u | ϕ(0),...,ϕ(17) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -1 | 3 | -1 | -3 | 3 | 1 | -3 | -1 | 3 | -3 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 |
1 | 3 | -3 | 3 | -1 | 1 | 3 | -3 | -1 | -3 | -3 | -1 | -3 | 3 | 1 | -1 | 3 | -3 | 3 |
2 | -3 | 3 | 1 | -1 | -1 | 3 | -3 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 3 | -1 | -3 | -1 |
3 | -3 | -3 | 3 | 3 | 3 | 1 | -3 | 1 | 3 | 3 | 1 | -3 | -3 | 3 | -1 | -3 | -1 | 1 |
4 | 1 | 1 | -1 | -1 | -3 | -1 | 1 | -3 | -3 | -3 | 1 | -3 | -1 | -1 | 1 | -1 | 3 | 1 |
5 | 3 | -3 | 1 | 1 | 3 | -1 | 1 | -1 | -1 | -3 | 1 | 1 | -1 | 3 | 3 | -3 | 3 | -1 |
6 | -3 | 3 | -1 | 1 | 3 | 1 | -3 | -1 | 1 | 1 | -3 | 1 | 3 | 3 | -1 | -3 | -3 | -3 |
7 | 1 | 1 | -3 | 3 | 3 | 1 | 3 | -3 | 3 | -1 | 1 | 1 | -1 | 1 | -3 | -3 | -1 | 3 |
8 | -3 | 1 | -3 | -3 | 1 | -3 | -3 | 3 | 1 | -3 | -1 | -3 | -3 | -3 | -1 | 1 | 1 | 3 |
9 | 3 | -1 | 3 | 1 | -3 | -3 | -1 | 1 | -3 | -3 | 3 | 3 | 3 | 1 | 3 | -3 | 3 | -3 |
10 | -3 | -3 | -3 | 1 | -3 | 3 | 1 | 1 | 3 | -3 | -3 | 1 | 3 | -1 | 3 | -3 | -3 | 3 |
11 | -3 | -3 | 3 | 3 | 3 | -1 | -1 | -3 | -1 | -1 | -1 | 3 | 1 | -3 | -3 | -1 | 3 | -1 |
12 | -3 | -1 | -3 | -3 | 1 | 1 | -1 | -3 | -1 | -3 | -1 | -1 | 3 | 3 | -1 | 3 | 1 | 3 |
13 | 1 | 1 | -3 | -3 | -3 | -3 | 1 | 3 | -3 | 3 | 3 | 1 | -3 | -1 | 3 | -1 | -3 | 1 |
14 | -3 | 3 | -1 | -3 | -1 | -3 | 1 | 1 | -3 | -3 | -1 | -1 | 3 | -3 | 1 | 3 | 1 | 1 |
15 | 3 | 1 | -3 | 1 | -3 | 3 | 3 | -1 | -3 | -3 | -1 | -3 | -3 | 3 | -3 | -1 | 1 | 3 |
16 | -3 | -1 | -3 | -1 | -3 | 1 | 3 | -3 | -1 | 3 | 3 | 3 | 1 | -1 | -3 | 3 | -1 | -3 |
17 | -3 | -1 | 3 | 3 | -1 | 3 | -1 | -3 | -1 | 1 | -1 | -3 | -1 | -1 | -1 | 3 | 3 | 1 |
18 | -3 | 1 | -3 | -1 | -1 | 3 | 1 | -3 | -3 | -3 | -1 | -3 | -3 | 1 | 1 | 1 | -1 | -1 |
19 | 3 | 3 | 3 | -3 | -1 | -3 | -1 | 3 | -1 | 1 | -1 | -3 | 1 | -3 | -3 | -1 | 3 | 3 |
20 | -3 | 1 | 1 | -3 | 1 | 1 | 3 | -3 | -1 | -3 | -1 | 3 | -3 | 3 | -1 | -1 | -1 | -3 |
21 | 1 | -3 | -1 | -3 | 3 | 3 | -1 | -3 | 1 | -3 | -3 | -1 | -3 | -1 | 1 | 3 | 3 | 3 |
22 | -3 | -3 | 1 | -1 | -1 | 1 | 1 | -3 | -1 | 3 | 3 | 3 | 3 | -1 | 3 | 1 | 3 | 1 |
23 | 3 | -1 | -3 | 1 | -3 | -3 | -3 | 3 | 3 | -1 | 1 | -3 | -1 | 3 | 1 | 1 | 3 | 3 |
24 | 3 | -1 | -1 | 1 | -3 | -1 | -3 | -1 | -3 | -3 | -1 | -3 | 1 | 1 | 1 | -3 | -3 | 3 |
25 | -3 | -3 | 1 | -3 | 3 | 3 | 3 | -1 | 3 | 1 | 1 | -3 | -3 | -3 | 3 | -3 | -1 | -1 |
26 | -3 | -1 | -1 | -3 | 1 | -3 | 3 | -1 | -1 | -3 | 3 | 3 | -3 | -1 | 3 | -1 | -1 | -1 |
27 | -3 | -3 | 3 | 3 | -3 | 1 | 3 | -1 | -3 | 1 | -1 | -3 | 3 | -3 | -1 | -1 | -1 | 3 |
28 | -1 | -3 | 1 | -3 | -3 | -3 | 1 | 1 | 3 | 3 | -3 | 3 | 3 | -3 | -1 | 3 | -3 | 1 |
29 | -3 | 3 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 3 | 3 | -3 | -1 | 1 | 3 | -1 | 3 | -1 |
φ(n) for Mzc=24 | ||||||||||||||||||||||||
u | ϕ(0),...,ϕ(23) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -1 | -3 | 3 | -1 | 3 | 1 | 3 | -1 | 1 | -3 | -1 | -3 | -1 | 1 | 3 | -3 | -1 | -3 | 3 | 3 | 3 | -3 | -3 | -3 |
1 | -1 | -3 | 3 | 1 | 1 | -3 | 1 | -3 | -3 | 1 | -3 | -1 | -1 | 3 | -3 | 3 | 3 | 3 | -3 | 1 | 3 | 3 | -3 | -3 |
2 | -1 | -3 | -3 | 1 | -1 | -1 | -3 | 1 | 3 | -1 | -3 | -1 | -1 | -3 | 1 | 1 | 3 | 1 | -3 | -1 | -1 | 3 | -3 | -3 |
3 | 1 | -3 | 3 | -1 | -3 | -1 | 3 | 3 | 1 | -1 | 1 | 1 | 3 | -3 | -1 | -3 | -3 | -3 | -1 | 3 | -3 | -1 | -3 | -3 |
4 | -1 | 3 | -3 | -3 | -1 | 3 | -1 | -1 | 1 | 3 | 1 | 3 | -1 | -1 | -3 | 1 | 3 | 1 | -1 | -3 | 1 | -1 | -3 | -3 |
5 | -3 | -1 | 1 | -3 | -3 | 1 | 1 | -3 | 3 | -1 | -1 | -3 | 1 | 3 | 1 | -1 | -3 | -1 | -3 | 1 | -3 | -3 | -3 | -3 |
6 | -3 | 3 | 1 | 3 | -1 | 1 | -3 | 1 | -3 | 1 | -1 | -3 | -1 | -3 | -3 | -3 | -3 | -1 | -1 | -1 | 1 | 1 | -3 | -3 |
7 | -3 | 1 | 3 | -1 | 1 | -1 | 3 | -3 | 3 | -1 | -3 | -1 | -3 | 3 | -1 | -1 | -1 | -3 | -1 | -1 | -3 | 3 | 3 | -3 |
8 | -3 | 1 | -3 | 3 | -1 | -1 | -1 | -3 | 3 | 1 | -1 | -3 | -1 | 1 | 3 | -1 | 1 | -1 | 1 | -3 | -3 | -3 | -3 | -3 |
9 | 1 | 1 | -1 | -3 | -1 | 1 | 1 | -3 | 1 | -1 | 1 | -3 | 3 | -3 | -3 | 3 | -1 | -3 | 1 | 3 | -3 | 1 | -3 | -3 |
10 | -3 | -3 | -3 | -1 | 3 | -3 | 3 | 1 | 3 | 1 | -3 | -1 | -1 | -3 | 1 | 1 | 3 | 1 | -1 | -3 | 3 | 1 | 3 | -3 |
11 | -3 | 3 | -1 | 3 | 1 | -1 | -1 | -1 | 3 | 3 | 1 | 1 | 1 | 3 | 3 | 1 | -3 | -3 | -1 | 1 | -3 | 1 | 3 | -3 |
12 | 3 | -3 | 3 | -1 | -3 | 1 | 3 | 1 | -1 | -1 | -3 | -1 | 3 | -3 | 3 | -1 | -1 | 3 | 3 | -3 | -3 | 3 | -3 | -3 |
13 | -3 | 3 | -1 | 3 | -1 | 3 | 3 | 1 | 1 | -3 | 1 | 3 | -3 | 3 | -3 | -3 | -1 | 1 | 3 | -3 | -1 | -1 | -3 | -3 |
14 | -3 | 1 | -3 | -1 | -1 | 3 | 1 | 3 | -3 | 1 | -1 | 3 | 3 | -1 | -3 | 3 | -3 | -1 | -1 | -3 | -3 | -3 | 3 | -3 |
15 | -3 | -1 | -1 | -3 | 1 | -3 | -3 | -1 | -1 | 3 | -1 | 1 | -1 | 3 | 1 | -3 | -1 | 3 | 1 | 1 | -1 | -1 | -3 | -3 |
16 | -3 | -3 | 1 | -1 | 3 | 3 | -3 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 3 | -3 | 1 | -3 | 1 | -1 | -1 | -1 | -3 |
17 | 3 | -1 | 3 | -1 | 1 | -3 | 1 | 1 | -3 | -3 | 3 | -3 | -1 | -1 | -1 | -1 | -1 | -3 | -3 | -1 | 1 | 1 | -3 | -3 |
18 | -3 | 1 | -3 | 1 | -3 | -3 | 1 | -3 | 1 | -3 | -3 | -3 | -3 | -3 | 1 | -3 | -3 | 1 | 1 | -3 | 1 | 1 | -3 | -3 |
19 | -3 | -3 | 3 | 3 | 1 | -1 | -1 | -1 | 1 | -3 | -1 | 1 | -1 | 3 | -3 | -1 | -3 | -1 | -1 | 1 | -3 | 3 | -1 | -3 |
20 | -3 | -3 | -1 | -1 | -1 | -3 | 1 | -1 | -3 | -1 | 3 | -3 | 1 | -3 | 3 | -3 | 3 | 3 | 1 | -1 | -1 | 1 | -3 | -3 |
21 | 3 | -1 | 1 | -1 | 3 | -3 | 1 | 1 | 3 | -1 | -3 | 3 | 1 | -3 | 3 | -1 | -1 | -1 | -1 | 1 | -3 | -3 | -3 | -3 |
22 | -3 | 1 | -3 | 3 | -3 | 1 | -3 | 3 | 1 | -1 | -3 | -1 | -3 | -3 | -3 | -3 | 1 | 3 | -1 | 1 | 3 | 3 | 3 | -3 |
23 | -3 | -1 | 1 | -3 | -1 | -1 | 1 | 1 | 1 | 3 | 3 | -1 | 1 | -1 | 1 | -1 | -1 | -3 | -3 | -3 | 3 | 1 | -1 | -3 |
24 | -3 | 3 | -1 | -3 | -1 | -1 | -1 | 3 | -1 | -1 | 3 | -3 | -1 | 3 | -3 | 3 | -3 | -1 | 3 | 1 | 1 | -1 | -3 | -3 |
25 | -3 | 1 | -1 | -3 | -3 | -1 | 1 | -3 | -1 | -3 | 1 | 1 | -1 | 1 | 1 | 3 | 3 | 3 | -1 | 1 | -1 | 1 | -1 | -3 |
26 | -1 | 3 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -3 | 1 | 3 | 1 | 1 | -3 | -3 | -3 | -1 | -3 | -1 | -3 | -3 |
27 | 3 | -3 | -3 | -1 | 3 | 3 | -3 | -1 | 3 | 1 | 1 | 1 | 3 | -1 | 3 | -3 | -1 | 3 | -1 | 3 | 1 | -1 | -3 | -3 |
28 | -3 | 1 | -3 | 1 | -3 | 1 | 1 | 3 | 1 | -3 | -3 | -1 | 1 | 3 | -1 | -3 | 3 | 1 | -1 | -3 | -3 | -3 | -3 | -3 |
29 | 3 | -3 | -1 | 1 | 3 | -1 | -1 | -3 | -1 | 3 | -1 | -3 | -1 | -3 | 3 | -1 | 3 | 1 | 1 | -3 | 3 | -3 | -3 | -3 |